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1 Introduction

The cyclic reduction (CR) algorithm, originally introduced for solving block
tridiagonal system, has been successfully used to solve quadratic matrix equa-
tions and to compute the constant coefficient L0 of the inverse L(z) =

∑+∞
i=−∞ Liz

i

of the Laurent matrix polynomial H(z) = Pz−1 +Q+Rz, where P , Q and R
are square matrices [8].

The matrix L0 has some interesting properties and plays an important role
in the computation of certain matrix functions. In fact, it has been proved in
[15] that L0 coincides with the square root, the matrix sign or the polar factor
of a matrix A for suitable choices of Q and P = R as functions of A. Also
the geometric mean of two matrices A and B can be viewed as the matrix
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coefficient L0 for suitable choices of Q and P as functions of A and B. These
properties hold for P = Q, that is, when the polynomial H(z) is palindromic.

Motivated by this interplay bewtween CR and the inverse of a palindromic
Laurent polynomial, we specialize the cyclic reduction algorithm to the case
of palindromic matrix polynomials. We refer to the algorithm obtained in this
way as palindromic cyclic reduction (PCR).

We investigate the theoretical and computational properties of PCR and
relate this algorithm to other apparently different algorithms like Newton’s
iteration, quadrature formulae, evaluation/interpolation at the roots of the
unity, the finite sections algorithm, and averaging methods. This analysis pro-
vides a nice unification of several numerical methods, in the style of what has
been done for the geometric mean of matrices in [12].

As a consequence, we find a scaling technique that much improves the speed
of convergence of PCR, moreover, we prove necessary and sufficient conditions
for applicability and convergence. This is an important result, since so far
only sufficient conditions for convergence were known (see [8]) and no scaling
technique was available. Moreover, a precise analysis of the convergence speed
is performed, based on the location of the eigenvalues of a suitable matrix.

The paper is organized as follows. In Section 2 we recall CR and specialize
it to the palindromic case, and we recall the interplay between matrix functions
and PCR. In Section 3 we provide the different formulations of PCR and we
show the connection with Newton’s method for computing the matrix square
root. In Section 4 the scaled version of PCR is presented. In Section 5 we
give a complete convergence analysis for PCR, namely, we describe the set of
initial values for which the sequences converge and provide the order and the
rate of convergence in all cases. In Sections 6 and 7 we relate PCR with some
other algorithms, namely quadrature formulae, evaluation/interpolation at the
roots of unity, averaging techniques, and the finite sections algorithm for the
solution of large linear systems. In Section 8 we show the numerical behavior
of PCR and highlight the benefit of the scaling technique. Conclusions are
drawn in Section 9.

2 Preliminaries

In this section we recall properties of CR and PCR, palindromic quadratic ma-
trix equations, and the interplay between PCR and certain matrix functions.

2.1 Cyclic reduction and palindromic cyclic reduction

The cyclic reduction algorithm, in the form described in [4,7], generates the
set of rational matrix iterations




P0 = P, Q0 = Q, R0 = R,
Pk+1 = −PkQ

−1
k Pk,

Qk+1 = Qk − PkQ
−1
k Rk −RkQ

−1
k Pk, k = 0, 1, 2, . . .

Rk+1 = −RkQ
−1
k Rk,

(1)
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where P , Q and R are given square matrices of the same size. If we define also
the sequence Q̂k+1 = Q̂k − PkQ

−1
k Rk, with Q̂0 = Q, and if the sequences in

(1) are well defined and Q̂k is invertible for k sufficiently large, then a solution
of the quadratic matrix equation

PX2 +QX +R = 0, (2)

can be obtained as

X = − lim
k→∞

Q̂−1
k R. (3)

Under some assumptions, verified in several applications, the matrix sequences
generated by CR converge quadratically, but it is well known that for certain
initial values CR can converge linearly or even diverge (see [8]). Nevertheless,
a complete description of the set of all initial values for which the sequences
(1) converge, together with the rate of convergence, is still an open problem.

Here we study CR (1) in the special case where R = P , i.e., equation (2)
is the palindromic matrix equation PX2 + QX + P = 0. For this reason, we
will use the term Palindromic Cyclic Reduction (PCR) to denote the iteration
(1) in the special case where R = P .

In PCR the sequence {Rk}k coincides with the sequence {Pk}k and equa-
tions (1) take the simpler form





P0 = P, Q0 = Q,
Pk+1 = −PkQ

−1
k Pk,

Qk+1 = Qk − 2PkQ
−1
k Pk, k = 0, 1, 2, . . .

(4)

2.2 Matrix functions

We recall the definition of some matrix functions; for a thorough treatise on
this topic we refer the reader to the book [10].

Given a matrix A ∈ C
n×n and a (possibly complex valued) function f ,

which is sufficiently regular, a definition of f(A) can e given in terms of the
Jordan canonical form of A, say M−1AM = J1 ⊕ · · · ⊕ Js, where Ji, for
i = 1, . . . , s, is a Jordan block of size ki corresponding to an eigenvalue λi (the
λi’s need not be distinct and k1 + · · ·+ ks = n).

We set f(A) =M(f(J1)⊕ · · · ⊕ f(Js))M
−1, where

f(Ji) =




f(λi) f
′(λi) · · · f(ki−1)(λi)

(ki−1)!

f(λi)
. . .

...
. . . f ′(λi)

0 f(λi)



,

for i = 1, . . . , s, where ki is the size of Ji. The definition makes sense if f is
defined on λi for i = 1, . . . , s, and differentiable at λi when ki > 1.
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The principal matrix square root of A, denoted by the symbol A1/2 is
defined as f(A), where, for z ∈ C\(−∞, 0), f(z) is the principal square root of
z, that is the square root of z with nonnegative real part. The definition makes
sense if A has no negative real eigenvalues and semisimple null eigenvalues.
In this case, the matrix A1/2 is the unique solution of the matrix equation
X2 = A whose eigenvalues belong to the right half complex plane.

Analogously, the sign of a matrix A having no purely imaginary eigenval-
ues, denoted by sign(A), is defined as f(A), where, for no purely imaginary
complex numbers,

f(z) =

{
1 if Re(z) > 0,
−1 if Re(z) < 0.

The unitary polar factor of a nonsingular matrix A, denoted by polar(A),
is the unique matrix U such that

A = UH, U∗U = I,

where H is Hermitian positive definite. It holds that polar(A) = A(A∗A)−1/2

(see [10, Chapter 8]).
Given A and B Hermitian positive definite matrices, the matrix geometric

mean of A and B is defined as

A#B = A1/2(A−1/2BA−1/2)1/2A1/2,

or, equivalently, A#B = A(A−1B)1/2 (see [3, Chapter 4]).
We recall a useful lemma which is part of a general result on the relationship

between the Jordan canonical form of A and the one of f(A), whose complete
statement and proof can be found for instance in [11] or [17, Thm. 9.4.7].

Lemma 1 Let A ∈ C
n×n and let f(z) be such that f(A) is well defined. Let

λ be an eigenvalue of A such that f(z) differentiable at λ. If f ′(λ) 6= 0, then λ
is a semisimple eigenvalue of A if and only if f(λ) is a semisimple eigenvalue
of f(A).

2.3 Palindromic matrix equations

Consider the palindromic quadratic matrix equation

PX2 +QX + P = 0, (5)

where P and Q are square matrices of the same size. When Q is nonsingular,
it may be convenient to consider the equivalent matrix equation

MX2 +X +M = 0, (6)

where M = Q−1P . The next theorem of [15] shows that just the location of
the eigenvalues of M = Q−1P gives necessary and sufficient conditions for the
existence of a unique solution X∗ of (5) which is a function of M and with
spectral radius at most one.
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Theorem 1 Let P,Q be two square matrices, with Q nonsingular, and set
M = Q−1P . The following conditions are equivalent:

1. The matrix I − 4M2 admits a principal square root;
2. The matrix M has no real eigenvalues of modulus greater than 1/2 and the

real eigenvalues of modulus 1/2 (if any) are semisimple;
3. The matrix equation (5) has a unique solution X∗ which is a function of

M and whose eigenvalues lie in the closed unit disk; moreover, its explicit
expression is

X∗ = −2M(I + (I − 4M2)1/2)−1. (7)

We recall a useful corollary of Theorem 1, proved in [15].

Corollary 2 Let P,Q be two square matrices, with Q nonsingular, and set
M = Q−1P . The Laurent matrix polynomial

H(z) = Pz−1 +Q+ Pz (8)

is invertible in an open annulus containing the unit circle if and only if the
matrix M has no real eigenvalues of modulus greater than or equal to 1/2. In
that case the invertibility domain of H(z) contains the annulus AR = {R <
|z| < 1/R}, where R = ρ(X∗), and X∗ is defined in (7). Moreover, by setting
H(z)−1 = L(z) = ∑+∞

i=−∞ Liz
i one has Li = L−i for i > 0 and

L0 = (I − 4M2)−1/2Q−1. (9)

2.4 PCR and matrix functions

As shown in [15], a nice property of PCR is that the limit of the sequence
{Qk}k of (4) can be put in correspondence with the matrix functions defined
in Section 2.2. In fact, according to the type of the matrices P and Q, the
sequence {Qk}k is convergent and its limit Q∞ can be the square root of a
matrix A having no nonpositive real eigenvalues, the sign of a matrix A having
no purely imaginary eigenvalues, the polar factor of an invertible matrix A
and the geometric mean of two positive definite matrices A and B. More
specifically, by setting P = 1

4 (S−T ) and Q = 1
2 (S+T ) in (4), Table 1 reports

the limit Q∞ corresponding to suitable choices of S and T , as shown in [15,
Theorem 8].

Q∞ S T

A1/2 I A

sign(A) A A−1

polar(A) A A−∗

A#B A B

Table 1 The special values of Q∞ for suitable choices of S and T , with P = 1

4
(S− T ) and

Q = 1

2
(S + T )
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3 Equivalent formulations of PCR

We show that PCR can be reformulated in different ways. This fact leads to
a deeper understanding of PCR and to different algorithms for computing the
same sequences.

Observe that, by setting Xk = Qk and Hk = 2Pk+1 in (4), PCR can be
written as





X0 = Q, H0 = −2PQ−1P,
Xk+1 = Xk +Hk,

Hk+1 = −1

2
(HkX

−1
k+1Hk), k = 0, 1, 2, . . . .

(10)

Recurrences (10) can be expressed in terms of the matrices Xk, k > 0,
only. Indeed, we find that

Xk+1 = Xk +Hk = Xk − 1

2
Hk−1X

−1
k Hk−1

= Xk−
1

2
(Xk−Xk−1)X

−1
k (Xk−Xk−1) =

1

2
(Xk+2Xk−1−Xk−1X

−1
k Xk−1).

The resulting iteration is the three-term recurrence

Xk+1 =
1

2
(Xk + 2Xk−1 −Xk−1X

−1
k Xk−1), k = 1, 2, . . . , (11)

starting with X0 = Q, X1 = Q− 2PQ−1P .
The number of arithmetic operations to compute the sequence {Xk}k is

the same as the number of operation needed in formulas (4); however, in this
formulation, only a sequence of matrices is generated.

By setting Yk = Xk−1X
−1
k , and by multiplying on the left by X−1

k in (11),
we find that

Yk+1 =
1

2

(
I + 2Y −1

k − (Y −1
k )2

)
, k = 0, 1, 2, . . . , (12)

starting with Y0 = I − 2(PQ−1)2. If we introduce also the matrix sequence
{Zk}k defined as

Zk+1 = YkZk, k = 0, 1, 2, . . . , (13)

with Z0 = Q, we find that Zk = Xk for any k > 0. Therefore the sequences
{Yk}k and {Zk}k defined in (12) and in (13), respectively, represent another
formulation of PCR. Observe that the matrices Yk, k > 0, commute each other
and, in the case of convergence of PCR, converge to the identity matrix.

We point out that formulations (10) and (11) are similar to the ones given
for the Newton method for the square root in [13] and for the averaging it-
eration for the geometric mean in [12], respectively; while formulation (12) is
apparently new.

The expression (10) of PCR enables us to clarify the deep interplay between
PCR and Newton’s method. Indeed simplified Newton’s method applied to
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compute the principal square root of a matrix A consists in generating the
sequence

Y0 = I, Yk+1 =
1

2
(Yk +AY −1

k ) =
1

2
(Yk + Y −1

k A), k > 0, (14)

(see [10, Chap. 6] and the references therein). Now, set M = Q−1P and A =
I−4M2. By using the “incremental” formulation given in [13] for the rational
iteration (14), and by using the property that the matrices Yk commute each
other and with the matrix A, one can easily prove by induction on k that Xk is
well defined if and only if Yk is, and that Xk = QYk and Hk = Q(Yk+1 − Yk).
Therefore, up to the matrix multiplication by Q, the sequences {Xk}k and
{Hk}k in (10) coincide with the sequence generated by simplified Newton’s
method and with the Newton increment at each step, respectively.

This fact allows one to derive a scaling technique that accelerates the con-
vergence and necessary and sufficient conditions for convergence of PCR, as
shown in the following Sections 4 and 5.

4 Scaling technique

The equivalence between PCR (4) and Newton’s iteration (14) allows us to
introduce a scaling technique to accelerate the convergence of PCR .

In fact, the scaling technique has been introduced in [9] to accelerate the
convergence of the iteration Xk+1 = 1

2 (Xk +X−1
k ), which provides the matrix

sign function of A, when X0 = A. The scaling technique has been adapted
to the incremental Newton method [13] when the matrix whose square root
is required (I − 4M2 in our case) is nonsingular. By applying this scaling
technique to (14) and by using the equivalence with (4), we arrive at the
following scaled version of PCR:





X0 = Q, H0 = −2PQ−1P,

γk =

∣∣∣∣
det(Xk)

2

det(I − 4M2) det(Q)2

∣∣∣∣
−1/(2n)

,

X̂k = γkXk, Ĥk = γ−1
k (Hk +Xk/2)− γkXk/2,

Xk+1 = X̂k + Ĥk, Hk+1 = −1

2
(ĤkX

−1
k+1Ĥk), k = 0, 1, 2, . . . .

The parameter γk is obtained at no additional cost during the inversion
of Xk. Therefore the scaling technique does not increase the computational
cost of each step of the algorithm, but in certain cases the convergence is
dramatically accelerated.

5 Applicability and convergence properties of PCR

Two important issues of cyclic reduction are conditions for applicability and
properties of convergence. We show that for PCR we can give specific and
strong properties both for applicability and for convergence.
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Concerning applicability conditions, by Theorem 13 of [5], PCR has no
breakdown if and only if T2k+1−1[P,Q, P ] is nonsingular, for k = 0, 1, 2, . . .,
where Tm[P,Q, P ] is the leading m×m block submatrix of the infinite block
tridiagonal block Toeplitz matrix

T [P,Q, P ] =



Q P
P Q P

. . .
. . .

. . .


 .

For simplicity, we may consider the matrix Tm[M, I,M ], where M = Q−1P .

Using the orthogonal similarity Hm⊗I, where (Hm)ij =
√

2
m+1 sin

ijπ
m+1 , i, j =

1, . . . ,m, is the matrix defining the sine transform, we find that the matrix
Tm[M, I,M ] is similar to I + Vm ⊗M , where Vm is the m×m matrix

Vm =




0 1

1 0
. . .

. . .
. . . 1
1 0



, (15)

having eigenvalues 2 cos jπ
m+1 , for j = 1, . . . ,m.

Thus, the eigenvalues of Tm[M, I,M ] are 1 + 2λi cos
jπ

m+1 , for i = 1, . . . , r,
j = 1, . . . ,m, where λ1, . . . , λr are the eigenvalues ofM . The matrix T2k+1−1[P,Q, P ]
is singular for some k > 0 if and only if an eigenvalue of M belongs to the set
S :=

⋃∞
k=1 S2k+1−1, where

Sm =

{
z ∈ C : z = − 1

2 cos(kπ/(m+ 1))
, k = 1, . . . ,m, k 6= m+ 1

2

}
.

Observe that the set S is dense in the set (−∞,−1/2)∪ (1/2,+∞). Therefore,
if M has no real eigenvalues of modulus greater than 1/2, then PCR has no
breakdown.

The equivalence between PCR and Newton’s method allows us to prove a
stronger result than Theorem 13 of [5]. Indeed, it gives necessary and suffi-
cient conditions for both applicability and convergence of PCR. This result is
expressed by the following

Theorem 3 Let P , Q be two square matrices, with Q nonsingular, and set
M = Q−1P . Then PCR is well defined and convergent if and only if the
matrix M has no real eigenvalues of modulus greater than 1/2 and the real
eigenvalues of modulus 1/2 (if any) are semisimple. In particular, if M has no
real eigenvalues of modulus 1/2 then PCR converges quadratically and Pk → 0,
Qk → Qψ(M), where ψ(z) = (1 − 4z2)1/2; if M has at least one semisimple
eigenvalue of modulus 1/2, then PCR converges linearly to the same limit.
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Proof By Theorem 1, A = I − 4M2 has a principal square root if and only if
the matrix M has no real eigenvalues of modulus greater than or equal to 1/2
and the real eigenvalues of modulus 1/2 (if any) are semisimple.

The proof is achieved by applying iteration (14) to A = I − 4M2 and
by observing that the sequence Yk converges to A1/2 = ψ(M), if and only if
Qk = QYk → Qψ(M) and Pk = Q(Yk − Yk−1) → 0.

Iteration (14) is well defined and converges quadratically to A1/2 if M has
no real eigenvalues of modulus greater than 1/2, while it converges linearly to
A1/2 if in addition M has some real eigenvalue of modulus 1/2 (all of which
are semisimple). This result is now customary and can be found in [10, Thm.
6.9–6.10].

Conversely, we use the fact that sequence (14) converges if and only if the
sequence Yk+1 = 1

2 (Yk + JiY
−1
k ), Y0 = I converges for each Jordan block Ji

of A. In particular a necessary condition for the convergence of sequence (14)
is that the scalar sequence yk+1 = 1

2 (yk + λiy
−1
k ), y0 = 1 converges for each

eigenvalue λi of A (see [10,14]).
If M has a real eigenvalue of modulus 1/2 corresponding to a nontrivial

Jordan block, then by Theorem 1, A has a zero eigenvalue corresponding to

a nontrivial Jordan block as well. Consider the sequence Yk = (y
(k)
ij ) obtained

by iteration (14), where A is a nontrivial Jordan block relative to the zero

eigenvalue; observe that y
(k)
22 = 1/2k, y

(k)
12 > 0 and thus y

(k+1)
12 = 1

2 (y
(k)
12 +

(y
(k)
22 )−1) > 2k−1. Therefore the matrix sequence {Yk}k diverges.
If M has real eigenvalues outside the interval [−1/2, 1/2] then the matrix

A has a negative eigenvalue λ. The scalar iteration corresponding to λ does
not converge, in fact the sequence obtained for y0 = 1 is real or it is not well
defined and cannot converge to the fixed points of the iteration which are
±
√
−λi. Thus, the matrix iteration cannot converge.

Observe that the conditions of convergence of PCR stated by the above
theorem are equivalent to any of the conditions of Theorem 1.

We wish to point out that Theorem 3 is an important result, since for
general CR, no necessary and sufficient condition for the applicability is known,
but only sufficient conditions for convergence have been found so far (see [5,
8]).

The matrix X∗ of (7) can be directly computed by PCR, as stated by the
following corollary of Theorem 3:

Corollary 4 If PCR is convergent, then X∗ = −2(Q+Q∞)−1P , where Q∞ =
limkQk.

Proof It holds that

−2(Q+Q∞)−1P = −2(Q+Q(I−4M2)1/2)−1P = −2(I+(I−4M2)1/2)−1M = X∗,

where the last equality follows from the fact thatM commutes with any matrix
function of itself [10, Thm. 1.13].
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Observe also that Q∞ := limkQk = Q0+2
∑∞

k=0 Pk, therefore
∑∞

k=0 Pk =
1
2 (Q∞ −Q). In particular, the sequence {Q̂k}k is not needed in PCR in order

to compute X∗ by means of formula (3), since limk Q̂k = Q0 +
∑∞

k=0 Pk =
1
2 (Q∞ +Q). Indeed, the latter equality and formula (3) yield Corollary 4.

To conclude we give a precise estimate of the rate of convergence of PCR.

Theorem 5 Assume that M has no real eigenvalues of modulus greater than
1/2, and that the real eigenvalues of modulus 1/2 (if any) are semisimple. The
following properties hold:

– if M has no real eigenvalues of modulus 1/2, then ‖Pk‖ = O(ξ2
k

), ‖Qk −
Qψ(M)‖ = O(ξ2

k

), where ξ is any real number such that ρ(X∗) < ξ < 1,
that is, convergence is at least quadratic;

– if M has at least one semisimple eigenvalue of modulus 1/2, then ‖Pk‖ =
O(2−k) and ‖Qk − Qψ(M)‖ = O(2−k), that is, convergence is at least
linear.

Proof The rate of convergence in case of quadratic convergence follows from
Theorem 16 of [5]. The linear convergence of rate 1/2 follows from Theorem
6.10 of [10].

6 Quadrature formulae, evaluation/interpolation and PCR

Assume that the matrixM = Q−1P has no real eigenvalues of modulus greater
than or equal to 1/2. According to Theorem 3, PCR is convergent and the
inverse of the limit of the sequence {Qk}k is L0 = (I − 4M2)−1/2Q−1, that is
the constant coefficient of the inverse of the Laurent matrix polynomialH(z) =
Pz−1 + Q + Pz given in (9). We show that the matrix L0 can be obtained
also by different methods, relying on an integral representation, and on the
evaluation/interpolation of L(z) = H(z)−1 at the roots of one. Surprisingly,
we prove that the latter two approaches are strictly related to PCR.

We assume that the hypotheses of Corollary 2 hold, therefore the Laurent
power series L(z) is convergent in the annulus AR containing the unit circle.

In the sequel, we set ωN = e
2πi

N , thus ωN is a primitive N -th root of the
unity.

6.1 Quadrature formulae

Since the function L(z) = H(z)−1 =
∑+∞

i=−∞ Liz
i is convergent in an annulus

containing the unit circle, from a classic result on block Toeplitz matrices (see
for instance [6, Theorem 3.1]), one has

L0 =
1

2π

∫ 2π

0

L(eiϑ)dϑ.
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Observe that L(eiϑ) = H(eiϑ)−1 = (Q+ 2P cosϑ)
−1

, therefore the above for-
mula can be rewritten as

L0 =
1

2π

∫ 2π

0

(Q+ 2P cosϑ)
−1
dϑ, (16)

and, by using the symmetry of the cosine we find that

L0 =
1

π

∫ π

0

(Q+ 2P cosϑ)−1dϑ. (17)

Setting t = cosϑ in (17), one obtains the formula

L0 =
1

π

∫ 1

−1

(Q+ 2Pt)−1

√
1− t2

dt. (18)

The trapezoidal rule with k+1 nodes applied to (16) provides the approx-
imation

Wk =
1

k

k−1∑

j=0

(
Q+ 2P cos

2πj

k

)−1

, (19)

where we have used the periodicity of the integrand function. The integrand
function (Q+ 2P cosϑ)−1 is infinitely differentiable in [0, 2π] and the odd or-
dered derivatives are periodic of period 2π. With these hypotheses a classical
result in quadrature theory states that the order of convergence of the trape-
zoidal rule with k + 1 nodes is greater than any power of h, where h = 2π/k
(see for instance Corollary 1 of Section 5.4 in [2]) and thus it is well suited for
approximating the integral (16).

The trapezoidal rule on k + 1 nodes applied to (17) leads to the formula

Tk =
1

k


 (Q+ 2P )−1

2
+

k−1∑

j=1

(
Q+ 2P cos

πj

k

)−1

+
(Q− 2P )−1

2


 . (20)

Again, the symmetry of the cosine function gives Tk = W2k where Wk is
defined in (19), hence the quadrature formula (20) is a convenient way to get
(19) for an even number of nodes.

Formula (18) is well suited for the Gauss-Chebyshev quadrature, whose
formula for k nodes is

Ck =
1

k

k−1∑

j=0

(
Q+ 2P cos

(2j + 1)π

2k

)−1

. (21)

Observe that the nodes of the Gauss-Chebyshev quadrature are midpoints
of the intervals chosen for the trapezoidal rule, so we obtain T2k = 1

2 (Tk+Ck).
Therefore there is a nice explicit relationship between the trapezoidal rule and
the Gauss-Chebyshev quadrature.
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6.2 Evaluation/interpolation at the roots of one

We show how the block coefficient L0 can be approximated by means of eval-
uation/interpolation at the roots of one.

Let N be an even positive integer, and let

P (N)(z) =

N/2−1∑

j=−N/2

P
(N)
j zj

be the Laurent matrix polynomial that verifies the interpolation conditions
P (N)(ωi

N ) = L(ωi
N ), for i = 0, . . . , N − 1. Then one has (see for instance [6,

Thm. 3.8])

L0 = P
(N)
0 − 2

∞∑

j=1

LNj .

Therefore, the error obtained approximating L0 by P
(N)
0 is

∥∥L0 − P
(N)
0

∥∥ = 2
∥∥∥

∞∑

j=1

LNj

∥∥∥,

where ‖ · ‖ is any matrix norm. Since L(z) is convergent in the annulus AR =
{R < |z| < 1/R}, from the Cauchy integral formula (see for instance [6, Thm.
3.6]), the norm ‖Li‖ of the block coefficients converges to zero faster than ρi,
for any R < ρ < 1, therefore there exists a constant c, independent of N , such
that ∥∥L0 − P

(N)
0

∥∥ 6 cρN .

In other words, the sequence
{
P

(N)
0

}
N

converges at least linearly to L0, and
the rate of convergence is bounded by the internal radius R of the invertibility
annulus of H(z).

The coefficients of the Laurent matrix polynomial P (N)(z) in the order

P
(N)
0 , P

(N)
1 , . . . , P

(N)
N/2−1, P

(N)
−N/2, . . . , P

(N)
−1 ,

can be obtained as Fu, where F = Ω⊗I, with Ω the Fourier matrix of size N ,
and ui = L(ωi

N ) for i = 0, . . . , N − 1 (see [6, Sec. 3.1.2]). Thus, we may give

an explicit expression to P
(N)
0 using the fact that the first row of the Fourier

matrix is made of ones:

P
(N)
0 =

1

N

N−1∑

i=0

L(ωi
N ).

On the other hand

L(ωi
N ) = H(ωi

N )−1 =

(
Q+ 2P cos

2πi

N

)−1

,
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therefore

P
(N)
0 =

1

N

N−1∑

i=0

(
Q+ 2P cos

2πi

N

)−1

. (22)

Observe that the latter formula coincides with (19) when k = N ; there-
fore the trapezoidal rule on the integral (16) is equivalent to the evalua-
tion/interpolation of L(z) at the roots of one.

6.3 Connections with PCR and the generalized averaging iteration

We show that the quadrature formulas derived in the previous section are
strictly related with PCR and with the generalized averaging iteration [1,16].

Let us define the Laurent matrix polynomial

H(k)(z) = Pkz
−1 +Qk + Pkz, k > 0, (23)

where Pk and Qk are defined in (4), and set

L(k)(z) = H(k)(z)−1, k > 0. (24)

Since H(k)(z) is palindromic, one has Qk = H(k)(i) = H(k)(−i); therefore from
(24) one obtains

Qk = L(k)(±i)−1. (25)

By using the functional formulation of CR (see [8]), one has

L(k+1)(z2) =
1

2

(
L(k)(z) + L(k)(−z)

)
. (26)

One may easily verify by induction on k that the latter formula can be rewrit-
ten as

L(k)(z2
k

) =
1

2k

2k−1∑

j=0

L(ωj
2k
z).

Therefore, from the latter equation and from (25), it follows that

Q−1
k =

1

2k

2k−1∑

j=0

L(ωj
2k
ζ), (27)

where ζ is such that ζ2
k

= ±i, for instance, ζ = ω2k+2 .
On the other hand, with ζ = ω2k+2

L(ωj
2k
ζ) =

(
Q+ 2P cos

(4j + 1)π

2k+1

)−1

,

therefore

Q−1
k =

1

2k

2k−1∑

j=0

(
Q+ 2P cos

(4j + 1)π

2k+1

)−1

=
1

2k

2k−1∑

j=0

(
Q+ 2P cos

(2j + 1)π

2k+1

)−1

,

(28)
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where the latter equality is obtained by using the symmetry of the cosine
function. Observe that the latter formula coincides with C2k given in (21);
therefore the Gauss-Chebyshev quadrature on 2k nodes of the integral (18)
coincides with the inverse of the matrix Qk of PCR. This connection between
PCR and Gaussian quadrature has been already observed in the context of
matrix geometric means in [12].

We have already observed that the Gaussian quadrature of (18) with k
nodes and the trapezoidal rule applied to (17) with k + 1 nodes lead to se-
quences Ck and Tk related through the relation T2k+1 = 1

2 (T2k + C2k) . Now
we give another interesting relationship.

Proposition 6 Let P and Q be square matrices such that Q is invertible and
M = Q−1P has no real eigenvalues of modulus greater than or equal to 1/2.
Let Tk and Ck be the sequences defined in (20) and (21), then, C2k , T2k and
C−1

2k
+ T−1

2k
are invertible matrices and we have C2k+1 = 2(C−1

2k
+ T−1

2k
)−1. In

other words, C2k+1 is the harmonic mean of T2k and C2k .

Proof We know that C2k = Q−1
k , C1 = Q−1, and

T1 =
1

2

(
(Q+ 2P )−1 + (Q− 2P )−1

)
= A−1Q−1,

where A = I − 4M2 with M = Q−1P , so C2k and T1 are invertible.
We show by induction that T2k = C1C

−1
2k
T1 = T1C

−1
2k
C1, proving at the

same time that T2k is invertible. The statement is true for k = 0, while for
k > 0, the equivalence between Newton’s method for the square root and PCR,
proved in Section 3, where a recurrence for Yk = Q−1Qk is given, gives

C1C
−1
2k+1T1 = Q−1Qk+1T1 = Yk+1T1 =

1

2
(Yk+Y

−1
k A)T1 =

1

2
(Q−1QkT1+Q

−1
k QAT1)

=
1

2
(C1C

−1
2k
T1 + C2kQAA

−1Q−1) =
1

2
(T2k + C2k) = T2k+1 ,

and thus T2k+1 is invertible. In a similar manner we can prove that T2k =
T1C

−1
2k
C1.

We use the property T2k = C1C
−1
2k
T1 = T1C

−1
2k
C1 together with the relation

T2k + C2k = 2T2k+1 to complete the proof, in fact

C−1
2k

+ T−1
2k

= C−1
1 T2kT

−1
1 + C−1

1 C2kT
−1
1 = 2C−1

1 T2k+1T−1
1 = 2C−1

2k+1 ,

and we have C2k+1 = 2(C−1
2k

+ T−1
2k

)−1.

In summary, T2k+1 is the arithmetic mean of C2k and T2k , while C2k+1 is
the harmonic mean of the two matrices. Both sequences converge quadratically
to the same limit, that is L0 (assuming that no real eigenvalue of Q−1P has
modulus greater than or equal to 1/2). The resulting iteration is





A1 =
1

2

(
(Q+ 2P )−1 + (Q− 2P )−1

)
, B1 = Q−1,

Ak+1 =
1

2
(Ak +Bk),

Bk+1 = 2Ak(Ak +Bk)
−1Bk, k = 1, 2, . . . ,
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which is a generalization of the averaging technique of Anderson and Trapp
[1] (see also [16]), who observed that, starting from two definite positive ma-
trices (or operators) A and B, and repeatedly computing the arithmetic and
harmonic means, one generates a coupled iteration which converges to the ge-
ometric mean A#B (generalizing a classic result for scalars). Namely, for A
and B posive definite, the sequence





A1 = A, B1 = B,

Ak+1 =
1

2
(Ak +Bk),

Bk+1 = 2Ak(Ak +Bk)
−1Bk, k = 1, 2, . . . ,

is such that Ak and Bk converge to A#B.

7 A finite sections algorithm and PCR

We present an algorithm for computing the coefficient L0 of the inverse of the
Laurent matrix polynomial H(z) = Pz−1 + Q + Pz based on finite sections.
Perhaps surprising, we will show that the algorithm produces the inverse of
one of the sequences obtained by PCR.

Consider the k × k block tridiagonal matrix

Tk =




Q P

P Q
. . .

. . .
. . . P
P Q



,

and consider the block linear system

T2k−1




X
(k)
1

X
(k)
2
...

X
(k)
2k−1



= ek ⊗ In

where X
(k)
j , j = 1, . . . , 2k− 1, are square matrices of the same size n as P and

Q, and ek is the k-th column of I2k−1.
We aim to show that for the limit of the central term of the block vector

(X
(k)
j )j it holds that L0 = limk→∞X

(k)
k .

The matrix Tk can be written as

Tk = Ik ⊗Q+ Vk ⊗ P,

where Vk is the k×k matrix defined in (15). The eigenvalues and eigenvectors
of Vk are explicitly known. In fact Dk = HkVkHk, where Hk is the discrete
sine transform matrix, i.e., the symmetric and orthogonal matrix whose j-th
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column has entries
√

2
k+1 sin

ijπ
k+1 , for i = 1, . . . , k, and Dk is the diagonal

matrix whose diagonal elements are 2 cos jπ
k+1 , for j = 1, . . . , k.

Therefore, Tk is similar to the block diagonal matrix

Dk = (HT
k ⊗ In)Tk(Hk ⊗ In) = Ik ⊗Q+Dk ⊗ P.

Hence

X
(k)
k = (eTk⊗In)T−1

2k−1(ek⊗In) = (eTk⊗In)(HT
2k−1⊗In)D−1

2k−1(H2k−1⊗In)(ek⊗In)
= (eTkH

T
2k−1 ⊗ In)D−1

2k−1(H2k−1ek ⊗ In).

Observe that eTkH
T
2k−1 = 1√

k

(
sin jπ

2

)
j=1,2,...,2k−1

, therefore

X
(k)
k =

1

k

2k−1∑

j=1

(
sin

jπ

2

)2 (
Q+ 2P cos

jπ

2k

)−1

=
1

k

k−1∑

j=0

(
Q+ 2P cos

(2j + 1)π

2k

)−1

.

(29)
Formula (29) coincides with the Gauss-Chebyshev quadrature formula Ck

in (21), and we have already observed in Section 6.3 that C2k = Q−1
k . The

convergence of X
(k)
k can be proved using the convergence properties of the

Gauss-Chebyshev quadrature.

8 Numerical experiments

We have performed some numerical experiments using MATLAB to compare
different formulations of PCR and to give numerical evidence of the effective-
ness of the scaling technique.

We have chosen Aε, Bε as n × n symmetric positive definite matrices,
depending on 0 < ε < 1

2 , and such that M = Q−1P , where P = 1
4 (Bε −

Aε), Q = 1
2 (Aε + Bε), has eigenvalues 1

2 − ε, 13 , . . . ,
1

n+1 . In this way, the

eigenvalues of M belong to the interval (− 1
2 ,

1
2 ) and, as ε tends to zero, an

eigenvalue ofM tends to 1
2 . With these hypotheses, the sequence Qk converges

to Aε#Bε, the geometric mean of Aε and Bε. We have computed Aε#Bε

with high precision by using the Symbolic Toolbox and we have compared the
values obtained using the different algorithms: the plain PCR (4) (PCR), the
incremental version (10), the three-term recurrence (3-term) implemented in
the more stable form

Xk+1 =
1

2
(Xk +Xk−1 +Xk−1X

−1
k (Xk−1 −Xk−2)),

formula (12) and the scaled version of the PCR described in Section 4 (Scaled
PCR). Tables 2 and 3 report, with n = 10 and , ε = 10−5 and ε = 10−10, re-
spectively, the maximum of the component-wise relative error and the relative
error in the spectral norm

‖Q̃−Aε#Bε‖
‖Aε#Bε‖
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error (component-wise) error (norm)
PCR 5.7 · 10−15 4.7 · 10−15

3-term 6.9 · 10−15 5.5 · 10−15

Scaled PCR 3.0 · 10−15 2.6 · 10−15

Table 2 n = 10 and ε = 10−5

error (component-wise) error (norm)
PCR 1.9 · 10−12 1.5 · 10−12

3-term 2.9 · 10−12 2.3 · 10−12

Scaled PCR 7.3 · 10−13 6.3 · 10−13

Table 3 n = 10 and ε = 10−10

where Q̃ is the computed geometric mean when the iteration has reached
numerical convergence. We have reported just the plain PCR, the three-term
recurrence, and the scaled PCR, since the two other versions gave essentially
the same results as plain PCR. The worst errors in the case ε = 10−10 are due
to a worst conditioning of the problem.

We observe that the algorithms are comparable in terms of accuracy. In
some examples, not reported here, the plain PCR performs better than the
three-term recurrence, while in other examples, the behavior is reversed. In
any test we made, the scaled version gave the better accuracy (and faster
convergence), so it should be preferred in practical computation.

Figure 1 reports the relative error of PCR and Scaled PCR at each itera-
tion. We observe that the scaling does not influence too much the convergence
in the case ε = 10−5, while it improves a lot the convergence in the case
ε = 10−10.
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10
0

 

 
PCR
Scaled PCR
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Fig. 1 Convergence behavior of PRC and Scaled PCR for the data matrices of Section 8
with n = 10 and ε = 10−5 (left) and ε = 10−10 (right)
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9 Conclusions

We have related PCR to several algorithms and quadrature formulae, getting
a nice unification of numerical methods, in the style of what has been done
for the geometric mean of matrices in [12].

As a side result we have introduced a scaling technique and we have given
necessary and sufficient conditions for applicability and convergence of PCR.
Unfortunately, these results cannot be easily generalized to get a complete
study of the convergence and a scaling for general CR, which remain yet im-
portant open problems. We hope that the results of this paper could help to
give insights into the general problem.
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Appendix. Technical results related to the symmetries of functions
of cosine

We give the proofs of some equalities used in the paper, based on the symmetry
of the cosine function.

Lemma 2 Let f be a function continuous in the interval [−1, 1], then

1

2π

∫ 2π

0

f(cosϑ)dϑ =
1

π

∫ π

0

f(cosϑ)dϑ.

Proof

1

2π

∫ 2π

0

f(cosϑ)dϑ =
1

2π

∫ π

0

f(cosϑ)dϑ+
1

2π

∫ 2π

π

f(cosϑ)dϑ

=
1

2π

∫ π

0

f(cosϑ)dϑ− 1

2π

∫ 0

π

f(2π − cosϑ)dϑ

=
1

2π

∫ π

0

f(cosϑ)dϑ+
1

2π

∫ π

0

f(cosϑ)dϑ =
1

π

∫ π

0

f(cosϑ)dϑ

Lemma 3 For k > 1 and Wk and Tk as in (19) and (20), respectively it holds
that W2k = Tk.

Proof The equality follows from

kW2k =
1

2

2k−1∑

j=0

(
Q+ 2P cos

πj

k

)−1

=
1

2
(Q+2P )−1+

1

2

k∑

j=1

(
Q+2P cos

πj

k

)−1

+
1

2
(Q−2P )−1+

1

2

2k−1∑

j=k+1

(
Q+ 2P cos

πj

k

)−1

=
1

2
(Q+ 2P )−1 + 2

1

2

k∑

j=1

(
Q+ 2P cos

πj

k

)−1

+
1

2
(Q− 2P )−1 = kTk,

where we have used

2k−1∑

j=k+1

(
Q+ 2P cos

πj

k

)−1

=

k−1∑

j=1

(
Q+ 2P cos

π(2k − j)

k

)−1

=

k−1∑

j=1

(
Q+ 2P cos

πj

k

)−1

.

Lemma 4 Let f be a function continuous in [−1, 1], then for k > 0 it holds
that

2k−1∑

j=0

f

(
cos

(2j + 1)π

2k+1

)
=

2k−1∑

j=0

f

(
cos

(4j + 1)π

2k+1

)
.
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Proof

2k−1∑

j=0

f

(
cos

(2j + 1)π

2k+1

)
=

2k−1−1∑

j=0

f

(
cos

(4j + 1)π

2k+1

)
+

2k−1−1∑

j=0

f

(
cos

(4j + 3)π

2k+1

)

=

2k−1−1∑

j=0

f

(
cos

(4j + 1)π

2k+1

)
+

2k−1∑

j=2k−1

f

(
cos

(2k+2 − 4j − 4 + 3)π

2k+1

)

=

2k−1−1∑

j=0

f

(
cos

(4j + 1)π

2k+1

)
+

2k−1∑

j=2k−1

f

(
cos

(
2π − (4j + 1)π

2k+1

))

=

2k−1∑

j=0

f

(
cos

(4j + 1)π

2k+1

)
.


